Compounds with Bridgehead Nitrogen Part 71.¹ Stereochemistry of Protonated Perhydropyrido[1,2-c][1,3]benzoxazepines

Trevor A. Crabb* and Asadollah Fallah

Department of Chemistry, Portsmouth Polytechnic, Portsmouth, Hampshire, PO1 2DT, UK

Protonation of syn-perhydropyrido[1,2-c][1,3]benzoxazepines in CDCl₃ solution by hydrogen chloride gas gives predominantly the *trans*-A/B ring fused hydrochloride salts. The corresponding *anti*-compounds give mixtures of hydrochlorides containing substantial amounts of the *cis*-salt. This latter compound prefers the *O*-outside *cis*-fused conformation.

Protonation of syn- (1-4) and anti-perhydropyrido[1,2-c]-[1,3]benzoxazepines $(5-8)^2$ may give in each case trans- and/or cis-fused hydrochloride salts (Scheme 1). In the absence of

Scheme 1 Protonation of perhydropyrido[1,2-c][1,3]benzoxazepines

proton exchange trans \implies cis-interconversion is prohibited but chair-chair interconversion permits an equilibrium for the cis-salt between O-inside and O-outside cis-conformations as shown in Schemes 2 and 3. This paper describes the stereochemistry of the protonated syn- and anti-perhydropyrido[1,2-c][1,3]benzoxazepines (1-8).

Results

Protonation of the perhydropyrido[1,2-c][1,3]benzoxazepines was carried out by passing a stream of hydrogen chloride gas through CDCl₃ solutions of the individual isomers and the ¹H

Scheme 2 The protonation of *syn*-perhydropyrido[1,2-c][1,3]benz-oxazepine (for R¹, R², R³ see Scheme 1)

and ¹³C NMR spectra (see Tables 1 and 2) of the resultant hydrochlorides were recorded in this solution immediately. In general the *trans*-fused stereochemistry was assigned to that salt showing the largest Δae for C-6 methylene group protons (*cf.* Δae is 0.5 ppm for the C-4 methylene protons in *trans*-fused quinolizidine hydrochloride³).

Protonation of the syn-Perhydropyrido[1,2-c][1,3]benzoxazepines.—The ¹H NMR spectrum of the protonated ethyl substituted compound 3 shows only one set of signals for the expected *trans*-fused salt 3-tH⁺. Absorption of the C-6 methylene protons at δ 5.23 ($J_{6,6'} = -10.8$, $J_{6,'NH} = 4.6$ Hz) and δ 4.67 ($J_{6,6'} = -10.8$, $J_{6','NH} = ca$. 1.0 Hz) is

Scheme 3 The protonation of *anti*-perhydropyrido[1,2-c][1,3]benzoxazepines. (For R¹, R², R³ see Scheme 1).

consistent with the *trans*-structure $(3-tH^+)$. This is supported by absorption of 8-Hax as a quartet at δ 2.67 $(J_{8ax,+NH} =$ 11.9 Hz).

The ¹³C NMR spectrum of protonated 3 (one set of signals) shows absorption at δ 89.0, δ 35.4 and δ 31.35 for C-6, C-9 and C-11 respectively, consistent with the *trans*-fused isomer 3-*t*H⁺ (C-6, C-9 and C-11 absorb at δ 88.7, δ 38.9 and δ 32.85 respectively in the corresponding free base 3²).

The ¹H NMR spectrum of protonated **2** shows two sets of signals in the ratio of *ca*. 5:1 in favour of the *O*-inside *cis*-fused salt **2**- c_1 H⁺. The *trans*-fused salt is characterised by a large Δae value (0.84 ppm) for the C-6 methylene ($J_{6,6'} = -10.8$ Hz) relative to that of the *cis*-fused salt (0.63 ppm). **2**-tH⁺ is also characterised by the expected upfield shift of C-11 (δ 27.6) relative to that (δ 31.35) of **3**-tH⁺ as a result of yax shielding by the ethyl group.

Absorption of 8-Hax as a quartet $(J_{8ax,8eq} = -11.8 \text{ Hz}, J_{8ax,9ax} = J_{8ax},^*\text{NH} = 11.8 \text{ Hz})$ in the spectrum of protonated 2 is consistent with equatorial ethyl substitution in the O-inside cis-fused salt 2- c_1 H⁺. This absorption is almost identical to that observed for 8-Hax in the spectrum of 3-tH⁺ ($J_{8ax,9ax} = J_{8ax},^*\text{NH} = 11.9 \text{ Hz}$) indicating correct assignment of structure for 2- c_1 H⁺. The presence of any O-outside cis-fused conformer in the 2- c_1 H⁺ \implies 2- c_2 H⁺ equilibrium is ruled out because of a severe interaction involving the C-6 methylene and the axial ethyl group. Upfield absorption of C-8 (δ 48.9) in the ^{13}C NMR spectrum of the protonated 2 relative to that (δ 58.15) in the *trans*-salt 2-tH⁺ and 3-tH⁺ (δ 59.8) is also consistent with the O-inside cis-fused conformer 2- c_1 H⁺.

The ¹H NMR spectrum of protonated *cis* (8-H, 11a-H)-8-methyl-*syn*-perhydropyrido[1,2-*c*][1,3]benzoxazepine (4) showed one set of signals with the C-6 methylene absorbing as a singlet at δ 5.08. Examination of the corresponding ¹³C NMR spectrum shows absorptions at δ 83.5, δ 32.1 and δ 31.2 for C-6, C-9 and C-11 respectively consistent with the *trans*-fused salt 4-*t*H⁺ (*cf.* C-6, C-9 and C-11 absorb at δ 80.9, δ 33.35 and δ 32.7 respectively in the corresponding free base²). The unexpected absorption of the C-6 methylene protons as a singlet may be due to change of conformation of the seven-membered ring on protonation [*cf.* Δ ae (C-6 methylene) 0.56 ppm in the *trans*-fused free base 4²].

The ¹H NMR spectrum of protonated *syn*-perhydropyrido[1,2-c][1,3]benzoxazepine 1 shows the presence of essentially one isomer with the ⁺NHCH₂O protons absorbing as a doublet of doublets at δ 5.27 ($J_{6',6'} = -10.5$ Hz, $J_{6','NH} = 4.5$ Hz) and a doublet at δ 4.62 ($J_{6',6'} = -10.5$ Hz and $J_{6','NH} = 0.0$ Hz) consistent with the *trans*-fused structure 1-*t*H⁺. The ¹³C NMR spectra of the protonated *syn*-perhydropyrido[1,2-c][1,3]benzoxazepine also showed only one set of signals. Comparison of some of the ¹³C NMR chemical shifts of 1-*t*H⁺ (C-8 55.3, C-9 23.0, C-10 23.2) with corresponding shifts (δ 56.1, 23.5, 22.4) of *trans*-fused quinolizidine hydrochloride **9**³ confirms the *trans*-fused isomer.

Protonation of anti-Perihydropyrido[1,2-c][1,3]benzoxazepines.—The ¹H NMR spectrum of protonated trans(H-9, H-11a)-9-ethyl-anti-perhydropyrido[1,2-c][1,3] benzoxazepine 7 shows two sets of signals in the ratio of ca. 1:1. The trans-fused isomer 7-tH⁺ is characterised by a large Δae of 0.67 ppm for the C-6 methylene protons. Absorption of 8-Hax as a broad quartet at δ 2.65 ($J_{8ax,8eq} = -12.0$ Hz, $J_{8ax,9ax} = J_{8ax,^{+}NH} = 12.0$ Hz) is also consistent with the trans-conformation (7-tH⁺) in which 8-Hax has a large vicinal coupling with the axial ⁺N-H.

In the ¹H NMR spectrum of the *cis*-isomer 7-*c*H⁺ absorption of 8-Hax as a triplet of doublets at $\delta 2.9$ ($J_{8ax,8eq} = -13.0$ Hz, $J_{8ax,9ax} = 13.0$ Hz and $J_{8ax,^*NH} = 3.0$ Hz) is consistent with the *O*-outside *cis*-conformer 7- c_2 H⁺ in which $J_{8ax,^*NH}$ is expected to be small (3.0 Hz). In the ¹H NMR spectrum of the *cis*hydrochloride observation of a small Δ ae value (0.34 ppm) for the C-6 methylene protons is consistent only with the *O*-outside *cis*-conformer 7- c_2 H⁺. This conformation was also characterised by upfield absorption of C-9 (δ 26.2) and C-11 (δ 25.4) relative to the shifts of corresponding nuclei of the *trans*-isomer (δ 34.9 and δ 28.2 respectively).

The ¹H NMR spectrum of protonated **6** shows only one set of signals corresponding to the *O*-inside *cis*-conformer **6**- c_1 H⁺. The *trans*-fused salt **6**-*t*H⁺ and the *O*-outside *cis*-conformer **6**- c_2 H⁺ of the *cis*-salt are both destabilised by the presence of the axial ethyl group. Upfield absorption of C-8 (δ 51.05) and C-10 (δ 24.5) in the ¹³C NMR spectrum of protonated **6** is consistent with **6**- c_1 H⁺ (*cf.* δ 57.4 and δ 31.5 in 7-*t*H⁺).

The ¹H NMR spectrum of protonated *anti*-8-methylperhydropyrido[1,2-c][1,3]benzoxazepine (8) showed the *trans*isomer (8-tH⁺) ($\Delta 6, 6' = 0.54$ ppm) as the minor component (ca. 10%) with the O-outside cis-salt (8-c₂H⁺) ($\Delta 6, 6' = 0.15$ ppm) as the major component. The latter can only adopt the Ooutside cis-conformer 8-c₂H⁺, since the O-inside cis-conformer 8-c₁H⁺ is destabilised by interactions involving the axial methyl group. The ¹³C NMR spectrum of protonated 8 confirmed the presence of the O-outside cis-conformer 8-c₂H⁺

 Table 1
 1H NMR spectra of the perhydropyrido[1,2-c][1,3]benzoxazepine hydrochloride salts (in CDCl₃)

Compound	6-Н	6′-H	4a-H	8-Heq	8-Hax	11a-H
 1-1	5.27 $J_{6,6'} = -10.5 \text{ Hz}$ $J_{6 \text{ NH}^+} = 4.5 \text{ Hz}$	4.62	_	_	_	_
2 - <i>t</i> H ⁺	5.42 $J_{6.6'} = -10.8 \text{ Hz}$	4.58	_	_	_	_
2 - <i>c</i> ₁ H ⁺	5.05 $J_{6.6'} = -10.0 \text{ Hz}$	4.42	3.32	$J_{\text{Bax.Beq}} = -11.8 \text{ Hz}$	2.75 z	3.73
3- <i>t</i> H ⁺	5.23 $J_{6,6'} = -10.8 \text{ Hz}$ $J_{6,'NH} = 4.6 \text{ Hz}$	4.67	3.22	$J_{8ax,*NH} =$ 3.36 $J_{8ax,9ax} =$ $J_{8ax,*NH} =$	2.67 11.9 Hz	3.06
4 - <i>t</i> H ⁺	5.08		_	_	_	_
5-1	5.32 $J_{6.6'} = -9.6 \text{ Hz}$ $J_{6.^{+}\text{NH}} = 2.5 \text{ Hz}$ $J_{6'^{+}\text{NH}} = 2.5 \text{ Hz}$	4.35	_	_	_	_
5 - <i>c</i> ₂	5.23 $J_{6,6'} = -10.5 \text{ Hz}$ $J_{6,^{+}\text{NH}} = 5.6 \text{ Hz}$ $J_{6,^{+}\text{NH}} = 3.75 \text{ Hz}$	4.76	_	_	_	_
6- <i>c</i> ₁ H ⁺	4.75		_	_	_	—
7- <i>t</i> H ⁺	5.17 $J_{6.6'} = -10.0 \text{ Hz}$ $J_{6.^{+}\text{NH}} = 4.2 \text{ Hz}$	4.5	_	3.45 $J_{8ax.8eq} = -12.0 \text{ Hz}$ J_{8} $J_{8ax,^{+}NH} =$	2.65 z ax,9ax = 12.0 Hz	_
7-c ₂ H+	5.17 $J_{6,6'} = -10.3 \text{ Hz}$ $J_{6,^{+}\text{NH}} = 3.7 \text{ Hz}$	4.83	_	3.15 $J_{\text{Bax, Beq}} = -13.0 \text{ H}$ $J_{\text{Bax, 9ax}} = J_{\text{Bax, *NH}} = J_{Bax$	2.90 z 13.0 Hz 3.0 Hz	_
8 - <i>c</i> ₂ H ⁺	5.03 $J_{6,6'} = -10.15 \text{ Hz}$ $J_{6,'NH} = 5.7 \text{ Hz} J_{6','NH} = 4$	4.88 z .2 Hz	—	_	—	—
 8- <i>t</i> H ⁺	5.28	4.74	_		_	

Table 2 13 C NMR spectra of the perhydropyrido[1,2-c][1,3]benzoxazepine hydrochloride salts (in CDCl₃)

Compound	Chemical shifts (δ)															
	C-1	C-2	C-3	C-4	C-5a	C-6	C-8	C-9	C-10	C-11	C-11a	C-12	C-12a	-CH ₂	-CH ₃	Ме
1- <i>t</i> ⁺	30.6	25.1	24.8	32.9	92.0	89.2	55.3	23.0	23.2	31.3	63.4	38.4	46.6		_	
2 - <i>t</i> H ⁺	31.1	24.65	26.1	31.95	91.8	89.55	58.15	33.9	29.4	27.6	63.7	37.9	46.5	22.7	12.3	—
$2-c_1H^+$	33.05	24.8	25.2	33.2	87.6	81.6	48.9	35.3	23.6	29.4	58.9	34.1	42.85	26.8	10.6	
3-1H ⁺	31.4	24.7	25.1	32.8	91.7	89.0	59.8	35.4	28.95	31.35	63.6	38.0	46.15	26.2	10.7	_
4 - <i>t</i> H ⁺	32.4	24.7	25.2	32.8	91.3	83.5	61.2	32.1	23.25	31.2	63.7	38.4	46.4	_	_	18.8
5- <i>t</i> H ⁺	32.9	24.45	26.0	33.4	90.35	85.5	54.3	24.7	23.0	31.7	60.7	38.0	40.5	_	_	_
$5 - c_2 H^+$	30.9	24.9	24.9	33.0	83.9	82.1	51.8	19.2	22.4	24.7	58.5	37.0	37.5	_		
6-c,H+	29.7	24.5	25.5	34.0	84.5	87.9	51.05	35.0	24.5	27.0	54.9	34.2	41.75	26.5	11.4	_
7-1Ĥ+	32.9	24.6	25.1	33.1	90.5	85.4	57.4	34.9	31.5ª	28.2 <i>ª</i>	61.1	37.9	39.9	16.2	10.7	
7-c,H+	31.8	24.55	24.9	32.85	85.4	84.7	57.0	26.2	29.2	25.4	59.4	37.2	39.1	26.2	10.9	
8-c_H+	31.2	24.7	24.8	32.8	89.35	78.8	60.3	26.4	23.3	24.2	63.6	37.55	39.8			17.4
8-tH+	31.9	24.45	24.5	32.65	91.0	83.2	60.9	32.6	23.0	31.0	63.5	38.2	46.1	_	_	18.65

" These shifts may be reversed

with upfield shifts of C-9 (δ 26.4) and C-11 (δ 24.2) relative to corresponding shifts for **8**-*t*H⁺ of δ 32.6 and δ 31.0.

The ¹³C NMR spectrum of protonated *anti*-perhydropyrido-[1,2-c][1,3]benzoxazepine (5) shows the presence of *trans*-fused (5-tH⁺) and *cis*-fused (5-cH⁺) (predominantly O-outside) isomers (*ca.* 55:45). The *trans*-fused isomer is indicated by the similar chemical shifts of C-9 (δ 24.7), C-10 (δ 23.0) and C-11 (δ 31.7) to the chemical shifts of the corresponding carbon nuclei in protonated quinolizidine. The unexpected upfield shift of C-8 (δ 51.5) relative to the corresponding carbon nucleus (δ 56.1) in protonated quinolizidine (9) and in the syn-compounds may be taken as an effect of the seven-membered ring.

The cis-fused isomer was assigned the O-outside cis-fused structure $5-c_2H^+$ on the grounds of the shielding of C-9 (δ 19.2) and C-11 (δ 24.7) relative to those (δ 24.7, 31.7 respectively) in the *trans*-fused isomer $5-tH^+$ due to γ ax effects. Absence of any significant shielding (two γ ax effects^{4.5}) of C-6 (δ 82.1) relative to the *trans*-fused isomer ($5-tH^+$) may be taken as showing changes in the seven-membered ring conformation.

Fig. 1 Conformations of the *cis*-fused salt of 5

Discussion

The results of the protonation of substituted syn- and antiperhydro [1,2-c][1,3] benzoxazepines show that the syn-isomers have a very strong preference to form the trans-fused salt. This is shown by the presence of ca. 20% trans-fused salt in the mixture of salts obtained on protonation of 3 despite an axial ethyl group in the trans-salt 3-tH⁺. Thus the tendency for formation of the trans-salts of the syn-isomers parallel the preference of the syn-free bases for the trans-fused conformation.

On protonation of the *anti*-parent compound 5, the *trans*-salt 5-tH⁺ and the *O*-outside *cis*-salts (5- c_2 H⁺) were formed in the ratio of *ca.* 45:55 respectively. Thus the *cis*-hydrochloride shows a marked preference for the *O*-outside *cis*-conformer whereas in the equilibrium (75% 5- $t \implies 25\%$ 5- c_1) for the parent compound 5 only the *O*-inside *cis*-conformer 5- c_1 is observed.² Examination of Dreiding models of the free base and of the protonated *anti*-parent compound show that the *O*-inside *cis*-conformer 5- c_1 , but not the *O*-outside *cis*-conformer 5- c_2 , is stabilised by a favourable $n_N \longrightarrow \sigma^*C$ -O anomeric effect.⁶ Such an effect is lost on protonation and accordingly the *O*-outside *cis*-salt 5- c_2 H⁺ increases in importance relative to the *O*-inside *cis*-salt 5- c_1 H⁺.

Dreiding models (see Fig. 1) suggest a chair-type conformation of the B ring with C-6 as the prow and the C(11a)-C(12) bond as the stern as most favourable for the Oinside cis-salt 5- c_1 H⁺. The conformation is stabilised by the anomeric effect involving the oxygen lone pair and the C(6)-N⁺ H bond but is destabilised by near eclipsing interactions about the C-(11a)-C(12) bond. The alternative O-outside cis-conformation $5-c_2H^+$ may adopt a rather more favourable chair-type conformation with C-12 as the prow and the O-C(6) bond as the stern. This conformation is stabilised by a similar anomeric effect to that present in $5-c_1H^+$ but the unfavourable eclipsing in 5- c_1 H⁺ is replaced by the energetically more favourable O-C(6) eclipsing. This occurrence of the O-outside cisconformation is unusual for these types of systems but must be due largely to the constraint on the conformations of the sevenmembered ring caused by trans-fusion to the C-ring. In this connection protonation of perhydropyrido[1,2-c][1,3]oxazepine (10) in which the seven-membered ring is relatively unconstrained gives a mixture of the trans-fused hydrochloride and the O-inside cis-fused hydrochloride.⁷

Experimental

Protonation of the perhydropyrido[1,2-c][1,3]benzoxazepines² was effected by passing a stream of dry hydrogen chloride gas through CDCl₃ solutions of the individual isomers. The ¹H and ¹³C NMR spectra of the resultant hydrochlorides were recorded in these solutions immediately.

Attempts to isolate the individual hydrochlorides by recrystallisation from ethanol were unsuccessful due to ready interconversion between *trans*- and *cis*-salts accompanied by ring opening of the tetrahydro-1,3-oxazepine, presumably *via* cleavage of the C-O bond of the N-C-O moiety, to give the reactive iminium ion. Other solvents proved unsuitable for recrystallisation purposes. In addition the isolated solid hydrochlorides were hygroscopic. The corresponding methiodides were also unstable.

¹H and ¹³C NMR spectra were recorded at room temperature in CDCl₃ solution (*ca.* 0.05 mol dm⁻³) in 5 mm tubes, on a JEOL GSX-270 (¹H, ¹³C) FT spectrometer at 270.16 (¹H) and 67.97 (¹³C) MHz, using the deuterium signal of the solvent as the lock and Me₄Si as internal standard. Chemical shifts were independent of concentration over the range of dilute solutions used. The most important measurement parameters were as follows: sweep width 3 (¹H) and 18 (¹³C) kHz, pulse width 3 (¹H) and 4.2 (¹³C) μ s (*ca.* 40° and 45° flip angle), acquisition time 5.459 or 0.901 s, number of scans 16–320 (¹H) and 1–20 K (¹³C), computer memory 32 K.

References

- 1 Part 70, T. A. Crabb and A. Fallah, J. Chem. Soc., Perkin Trans. 2, 1992, 1335.
- 2 T. A. Crabb, A. Fallah and O. G. Roch, J. Chem. Res. (S), 1990, 18.
- 3 The Sadtler Handbook of Proton NMR Spectra, ed. W. Simons, Sadtler Research Laboratories, inc., Sadtler and Heyden, 1978.
- 4 H. Booth and A. H. Bostock, J. Chem. Soc., Perkin Trans. 2, 1972, 615.
- 5 G. C. Levy and G. L. Nelson, Carbon 13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience, New York, 1972.
- 6 P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon Press, Oxford, 1983.
- 7 T. A. Crabb and A. N. Trethewey, Magn. Reson. Chem., 1988, 26, 748.

Paper 2/04079D Received 29th July 1992 Accepted 29th September 1992